\[\frac{3y^{2} + y - 24}{9 - y^{2}} = - 2\]
\[ОДЗ:\ \ \ 9 - y^{2} \neq 0\]
\[\ \ \ \Longrightarrow y \neq \pm 3\]
\[3y^{2} + y - 24 = - 2 \cdot \left( 9 - y^{2} \right)\]
\[3y^{2} + y - 24 + 2 \cdot \left( 9 - y^{2} \right) = 0\]
\[3y^{2} + y - 24 + 18 - 2y^{2} = 0\]
\[y^{2} + y - 6 = 0\]
\[D = b^{2} - 4ac =\]
\[= 1 - 4 \cdot 1 \cdot ( - 6) = 25\]
\[y_{1} = \frac{- 1 + 5}{2} = \frac{4}{2} = 2\]
\[y_{2} = \frac{- 1 - 5}{2} = - \frac{6}{2} =\]
\[= - 3\ \ (не\ подходит\ по\ ОДЗ)\]
\[Ответ:y = 2.\]