Вопрос:

Решите уравнение: (3x-1)/x-2x/(15x-5)=9/5.

Ответ:

\[\frac{3x - 1}{x} - \frac{2x}{15x - 5} = \frac{9}{5}\]

\[\frac{3x - 1^{\backslash 15x - 5}}{x} - \frac{2x^{\backslash x}}{5(3x - 1)} =\]

\[= \frac{9^{\backslash x(3x - 1)}}{5}\text{\ \ }\]

\[ОДЗ:x \neq 0;\ \ x \neq \frac{1}{3}.\]

\[45x^{2} - 15x - 15x + 5 - 2x^{2} =\]

\[= 27x^{2} - 9x\]

\[16x^{2} - 21x + 5 = 0\]

\[D = 441 - 320 = 121\]

\[x_{1} = \frac{21 + 11}{32} = 1;\]

\[x_{2} = \frac{21 - 11}{32} = \frac{10}{32} = \frac{5}{16}.\]

\[Ответ:x = \frac{5}{16};\ \ x = 1.\]

Похожие