\[\frac{3x - 1}{x} - \frac{2x}{15x - 5} = \frac{9}{5}\]
\[\frac{3x - 1^{\backslash 15x - 5}}{x} - \frac{2x^{\backslash x}}{5(3x - 1)} =\]
\[= \frac{9^{\backslash x(3x - 1)}}{5}\text{\ \ }\]
\[ОДЗ:x \neq 0;\ \ x \neq \frac{1}{3}.\]
\[45x^{2} - 15x - 15x + 5 - 2x^{2} =\]
\[= 27x^{2} - 9x\]
\[16x^{2} - 21x + 5 = 0\]
\[D = 441 - 320 = 121\]
\[x_{1} = \frac{21 + 11}{32} = 1;\]
\[x_{2} = \frac{21 - 11}{32} = \frac{10}{32} = \frac{5}{16}.\]
\[Ответ:x = \frac{5}{16};\ \ x = 1.\]