\[\frac{3x^{2} - 5x}{2} - \frac{5x^{2} - 8}{3} = 0\ \ \ \ \ \ \ \ | \cdot 6\]
\[3 \bullet \left( 3x^{2} - 5x \right) - 2 \bullet \left( 5x^{2} - 8 \right) =\]
\[= 0\]
\[9x^{2} - 15x - 10x^{2} + 16 = 0\]
\[- x^{2} - 15x + 16 = 0\ \ \ \ \ \ \ \ |\ :( - 1)\]
\[x^{2} + 15x - 16 = 0\]
\[D = 15^{2} - 4 \cdot 1 \cdot ( - 16) =\]
\[= 225 + 64 = 289\]
\[x_{1} = \frac{- 15 + \sqrt{289}}{2} = \frac{- 15 + 17}{2} =\]
\[= \frac{2}{2} = 1\]
\[x_{2} = \frac{- 15 - \sqrt{289}}{2} = \frac{- 15 - 17}{2} =\]
\[= \frac{- 32}{2} = - 16\]
\[Ответ:x = 1;\ x = - 16.\]