\[\frac{2x + 1}{x} + \frac{4x}{6x + 3} = - \frac{8}{3}\]
\[\frac{2x + 1^{\backslash 6x + 3}}{x} + \frac{4x^{\backslash x}}{3(2x + 1)} = - \frac{8^{\backslash x(2x + 1)}}{3}\]
\[ОДЗ:x \neq 0;x \neq - 0,5.\]
\[12x^{2} + 6x + 6x + 3 + 4x^{2} = - 16x^{2} - 8x\]
\[32x^{2} + 20x + 3 = 0\]
\[D_{1} = 100 - 96 = 4\]
\[x_{1} = \frac{- 10 + 2}{32} = - \frac{8}{32} = - \frac{1}{4};\]
\[x_{2} = \frac{- 10 - 2}{32} = - \frac{12}{32} = - \frac{3}{8}.\]
\[Ответ:x = - \frac{3}{8};\ \ x = - \frac{1}{4}.\]