\[\frac{100}{x² - 100} + \frac{x - 20}{x² + 10x} - \frac{5}{x^{2} - 10x} = 0\]
\[\frac{10}{(x - 10)(x + 10)} + \frac{x - 20}{x(x + 10)} - \frac{5}{x(x - 10)} = 0\]
\[ОДЗ:\ \ x
eq 0;\ \ \ \ \ x
eq 10;\ \ \ \ \ x
eq - 10.\]
\[Умножим\ на\ x(x - 10)(x + 10):\]
\[10x + (x - 20)(x - 10) - 5 \cdot (x + 10) = 0\]
\[10x + x² - 10x - 20x + 200 - 5x - 50 = 0\]
\[x² - 25x + 150 = 0\]
\[x_{1} + x_{2} = 25;\ \ \ \ x_{1} \cdot x_{2} = 150\]
\[x_{1} = 15;\ \ x_{2} = 10\ (не\ подходит).\]
\[Ответ:x = 15.\]