\[\left| \left| x^{2} - 4x + 1 \right| - 1 \right| = 2\]
\[\left| x^{2} - 4x + 1 \right| - 1 = 2\]
\[\left| x^{2} - 4x + 1 \right| = 3\]
\[x^{2} - 4x + 1 = 3\]
\[x^{2} - 4x - 2 = 0\]
\[D = ( - 4)^{2} - 4 \cdot ( - 2) =\]
\[= 16 + 8 = 24\]
\[x_{1} = \frac{4 + \sqrt{24}}{2} = \frac{4 + 2\sqrt{6}}{2} =\]
\[= 2 + \sqrt{6}\]
\[x_{2} = \frac{4 - \sqrt{24}}{2} = \frac{4 - 2\sqrt{6}}{2} =\]
\[= 2 - \sqrt{6}\]
\[x^{2} - 4x + 1 = - 3\]
\[x^{2} - 4x + 4 = 0\]
\[(x - 2)^{2} = 0\]
\[x - 2 = 0\]
\[x = 2.\]
\[\left| x^{2} - 4x + 1 \right| - 1 = - 2\]
\[\left| x^{2} - 4x + 1 \right| = - 1 \Longrightarrow\]
\[\Longrightarrow нет\ решения.\]
\[Ответ:2 + \sqrt{6}\ ;\ 2 - \sqrt{6};\ \ 2.\]