\[\left\{ \begin{matrix} y = x^{2} + 6x + 7 \\ y - 2x = 4\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[x^{2} + 6x + 7 - 2x = 4\]
\[x^{2} + 4x + 7 - 4 = 0\]
\[x^{2} + 4x + 3 = 0\]
\[D = 4^{2} - 4 \cdot 1 \cdot 3 = 16 - 12 = 4\]
\[x_{1} = \frac{- 4 + \sqrt{4}}{2} = \frac{- 4 + 2}{2} = \frac{- 2}{2} =\]
\[= - 1\]
\[x_{2} = \frac{- 4 - \sqrt{4}}{2} = \frac{- 4 - 2}{2} = \frac{- 6}{2} =\]
\[= - 3\]
\[x_{1} = - 1 \Longrightarrow \ \ \ \ \ \ y_{1} =\]
\[= ( - 1)^{2} + 6 \cdot ( - 1) + 7 =\]
\[= 1 - 6 + 7 = 2.\]
\[x_{2} = - 3 \Longrightarrow \ \ \ \ y_{2} =\]
\[= ( - 3)^{2} + 6 \cdot ( - 3) + 7 =\]
\[= 9 - 18 + 7 = - 2.\]
\[Ответ:( - 1;2),\ \ \ ( - 3;\ - 2).\]