\[\left\{ \begin{matrix} x^{2} - 3y^{2} = 13 \\ xy = - 4\ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix}\text{\ \ \ \ \ } \right.\ \]
\[\left\{ \begin{matrix} \left( - \frac{4}{y} \right)^{2} - 3y^{2} = 13 \\ x = \frac{- 4}{y}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix}\text{\ \ \ \ \ } \right.\ \ \]
\[\left\{ \begin{matrix} \frac{16}{y^{2}} - 3y^{2} = 13\ \ \ | \cdot y^{2} \\ x = \frac{- 4}{y}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[- 3y^{4} - 13y^{2} + 16 = 0;\ \ \ \ y \neq 0\]
\[Пусть\ \ y^{2} = t:\]
\[- 3t^{2} - 13t + 16 = 0\]
\[\ D = 169 + 192 = 361\]
\[t_{1} = \frac{13 - 19}{- 6} = 1;\ \ \]
\[t_{2} = \frac{13 + 19}{- 6} = - \frac{16}{3}\]
\[y^{2} = 1\ \ \ или\ \ \ \ \]
\[y^{2} = - \frac{16}{3} - не\ удовлетворяет.\]
\[\left\{ \begin{matrix} y = 1\ \ \ \\ x = - 4 \\ \end{matrix}\text{\ \ \ \ \ } \right.\ \text{\ \ \ \ \ }\left\{ \begin{matrix} y = - 1 \\ x = 4\ \ \ \\ \end{matrix} \right.\ \]
\[Ответ:( - 4;1),(4;\ - 1).\]