\[(3 - y)y = 2\]
\[3y - y^{2} = 2\]
\[y^{2} - 3y + 2 = 0\]
\[D = ( - 3)^{2} - 4 \cdot 1 \cdot 2 = 9 - 8 =\]
\[= 1\]
\[y_{1} = \frac{3 + \sqrt{1}}{2} = \frac{3 + 1}{2} = \frac{4}{2} = 2\]
\[y_{2} = \frac{3 - \sqrt{1}}{2} = \frac{3 - 1}{2} = \frac{2}{2} = 1\]
\[y_{1} = 2 \Longrightarrow \ \ \ \ \ \ \ x_{1} = 3 - 2 = 1.\]
\[y_{2} = 1 \Longrightarrow \ \ \ \ \ \ \ x_{2} = 3 - 1 = 2.\]
\[2)\ \left\{ \begin{matrix} x + y = - 3 \\ xy = 2\ \ \ \ \ \ \ \\ \end{matrix}\text{\ \ \ \ } \right.\ \left\{ \begin{matrix} x = - y - 3 \\ xy = 2\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[( - y - 3)y = 2\]
\[- y^{2} - 3y = 2\]
\[y^{2} + 3y + 2 = 0\]
\[D = 3^{2} - 4 \cdot 1 \cdot 2 = 9 - 8 = 1\]
\[y_{3} = \frac{- 3 + \sqrt{1}}{2} = \frac{- 3 + 1}{2} = \frac{- 2}{2} =\]
\[= - 1\]
\[y_{4} = \frac{- 3 - \sqrt{1}}{2} = \frac{- 3 - 1}{2} = \frac{- 4}{2} =\]
\[= - 2\]
\[y_{3} = - 1 \Longrightarrow x_{3} = - ( - 1) - 3 =\]
\[= 1 - 3 = - 2.\]
\[y_{4} = - 2 \Longrightarrow x_{4} = - ( - 2) - 3 =\]
\[= 2 - 3 = - 1.\]
\[Ответ:(1;2),\ (2;1),\ ( - 2;\ - 1),\]
\[\ ( - 1;\ - 2).\]