\[\frac{64}{y^{2}} + y^{2} - 18 = 0\ \ \ \ \ | \cdot y^{2} \neq 0\]
\[64 + y^{4} - 18y^{2} = 0\]
\[y^{4} - 18y^{2} + 64 = 0\]
\[Пусть\ y^{2} = t \geq 0:\]
\[t^{2} - 18t + 64 = 0\]
\[D_{1} = 81 - 64 = 17\]
\[t_{1} = 9 + \sqrt{17};\ \ \ t_{2} = 9 - \sqrt{17}.\]
\[1)\ y^{2} = 9 \pm \sqrt{17}\]
\[y = \pm \sqrt{9 \pm \sqrt{17}}\text{\ .}\]
\[2)\ x_{1,2} = \pm \frac{8}{\sqrt{9 \pm \sqrt{17}}}.\]