\[\left\{ \begin{matrix} \frac{x - 3}{x + 8} \leq 0\ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} + 6x - 7 \geq 0 \\ \end{matrix} \right.\ \]
\[x^{2} + 6x - 7 = x^{2} + 7x - x - 7 =\]
\[= x(x + 7) - (x + 7) =\]
\[= (x + 7)(x - 1)\]
\[\left\{ \begin{matrix} \frac{x - 3}{x + 8} \leq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (x + 7)(x - 1) \geq 0 \\ \end{matrix} \right.\ \]
\[Ответ:x \in ( - 8;\ - 7\rbrack \cup \lbrack 1;2\rbrack\]