Вопрос:

Решите неравенство: x^4-x^3<=(x-1)/x.

Ответ:

\[x^{4} - {x^{3}}^{\backslash x} \leq \frac{x - 1}{x}\]

\[\frac{\left( x^{4} - x^{3} \right)x - (x - 1)}{x} \leq 0\]

\[\frac{x^{4}(x - 1) - (x - 1)}{x} \leq 0\]

\[\frac{(x - 1)(x^{4} - 1)}{x} \leq 0\]

\[\frac{(x - 1)(x^{2} - 1)(x^{2} + 1)}{x} \leq 0\]

\[\frac{(x - 1)^{2}(x + 1)\left( x^{2} + 1 \right)}{x} \leq 0\]

\[\frac{(x - 1)^{2}(x + 1)}{x} \leq 0\]

\[Ответ:\lbrack - 1;0) \cup \left\{ 1 \right\}.\]

Похожие