\[x^{4} - {x^{3}}^{\backslash x} \leq \frac{x - 1}{x}\]
\[\frac{\left( x^{4} - x^{3} \right)x - (x - 1)}{x} \leq 0\]
\[\frac{x^{4}(x - 1) - (x - 1)}{x} \leq 0\]
\[\frac{(x - 1)(x^{4} - 1)}{x} \leq 0\]
\[\frac{(x - 1)(x^{2} - 1)(x^{2} + 1)}{x} \leq 0\]
\[\frac{(x - 1)^{2}(x + 1)\left( x^{2} + 1 \right)}{x} \leq 0\]
\[\frac{(x - 1)^{2}(x + 1)}{x} \leq 0\]
\[Ответ:\lbrack - 1;0) \cup \left\{ 1 \right\}.\]