\[\frac{x^{2} - 2x - 15}{x^{2} - 2x - 3} \geq 0\]
\[x^{2} - 2x - 15 =\]
\[= x^{2} - 5x + 3x - 15 =\]
\[= x(x - 5) + 3(x - 5) =\]
\[= (x - 5)(x + 3)\]
\[x^{2} - 2x - 3 = x^{2} - 3x + x - 3 =\]
\[= x(x - 3) + (x - 3) =\]
\[= (x - 3)(x + 1)\]
\[\frac{(x + 3)(x - 5)}{(x + 1)(x - 3)} \geq 0\]