Вопрос:

Решите неравенство: -6x^2+13x-5>=0.

Ответ:

\[- 6x^{2} + 13x - 5 \geq 0\]

\[6x^{2} - 13x + 5 \leq 0\]

\[D = 169 - 120 = 49\]

\[x_{1} = \frac{13 + 7}{12} = \frac{20}{12} = \frac{5}{3} = 1\frac{2}{3};\]

\[x_{2} = \frac{13 - 7}{12} = \frac{6}{12} = \frac{1}{2} = 0,5.\]

\[(x - 0,5)\left( x - 1\frac{2}{3} \right) \leq 0\]

\[0,5 \leq x \leq 1\frac{2}{3}.\]

\[Ответ:0,5 \leq x \leq 1\frac{2}{3}.\]

Похожие