\[\left| x^{2} - x - 8 \right| < 12\]
\[\left\{ \begin{matrix} x^{2} - x - 8 > - 12 \\ x^{2} - x - 8 < 12\ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} x² - x + 4 > 0\ \ \\ x² - x - 20 < 0 \\ \end{matrix} \right.\ \]
\[x^{2} - x + 4 > 0\]
\[D = 1 - 16 < 0 - x \in R.\]
\[x^{2} - x - 20 < 0\]
\[x_{1} + x_{2} = 1;\ \ x_{1} \cdot x_{2} = - 20\]
\[x_{1} = 5;\ \ x_{2} = - 4\]
\[(x + 4)(x - 5) < 0\]
\[- 4 < x < 5.\]
\[Ответ:( - 4;5).\]