\[\frac{3}{4}x - \frac{2}{3}x + 1 = \frac{1}{2}x + \frac{1}{6}\]
\[\frac{3}{4}x - \frac{2}{3}x - \frac{1}{2}x = \frac{1}{6} - 1^{\backslash 6}\]
\[x\left( \frac{3^{\backslash 3}}{4} - \frac{2^{\backslash 4}}{3} - \frac{1^{\backslash 6}}{2} \right) = \frac{1 - 6}{6}\]
\[- \frac{5}{12}x = - \frac{5}{6}\]
\[x = \frac{5}{6} \cdot \frac{12}{5}\]
\[x = \frac{12}{6}\]
\[x = 2.\]