\[Пусть\ x\ \ и\ y - нужные\ нам\ \]
\[числа;\]
\[xy - 13 = x + y;\]
\[x - 3y = 9.\]
\[Составим\ систему\ уравнений:\]
\[3y^{2} + 9y - 3y - 9 - y - 13 = 0\]
\[3y^{2} + 5y - 22 = 0\]
\[D = 25 + 264 = 289 = 17^{2}\]
\[y_{1} = \frac{- 5 + 17}{6} = 2;\ \ \]
\[y_{2} = \frac{- 5 - 17}{6} = - \frac{11}{3} = - 2\frac{2}{3}\text{.\ }\]
\[\left\{ \begin{matrix} y = 2\ \ \\ x = 15 \\ \end{matrix} \right.\ \ \ \ \ \ или\ \ \ \ \ \left\{ \begin{matrix} y = - 2\frac{2}{3} \\ x = - 2\ \ \ \\ \end{matrix} \right.\ \ \]
\[Ответ:числа\ 15\ и\ 2\ или\ ( - 2)\ и\]
\[\ \left( - 2\frac{2}{3} \right).\]