\[x^{2} - (3a + 2)x + 8a - 4a^{2} = 0\]
\[= 25a^{2} - 20a + 4 =\]
\[= (5a - 2)^{2} > 0;\ \ \ \ \ \ \ a \neq \frac{2}{5} \neq 0,4\]
\[x_{1} = \frac{3a + 2 - 5a + 2}{2} =\]
\[= \frac{- 2a + 4}{2} = - a + 2\]
\[x_{2} = \frac{3a + 2 + 5a - 2}{2} = \frac{8a}{2} = 4a\]
\[\left\{ \begin{matrix} - a + 2 > - 7 \\ 4a > - 7\ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} a < 9\ \ \ \ \ \ \\ a > - 1\frac{3}{4} \\ \end{matrix} \right.\ \]
\[Ответ:( - 1,75;0,4) \cup (0,4;9)\text{.\ }\]