Вопрос:

При каких b значение дроби (b^3-5b^2-4b+20)/(b^2-25) равно нулю?

Ответ:

\[\frac{b^{3} - 5b^{2} - 4b + 20}{b^{2} - 25} = 0\]

\[\frac{b^{2}(b - 5) - 4 \cdot (b - 5)}{b^{2} - 25} = 0\]

\[\frac{(b - 5)\left( b^{2} - 4 \right)}{(b - 5)(b + 5)} = 0;\ \ \ \ \ \ \ \ b \neq \pm 5\]

\[\frac{b^{2} - 4}{b + 5} = 0\]

\[b^{2} - 4 = 0\]

\[b = \pm 2.\]

\[Ответ:при\ b = \pm 2.\]

Похожие