\[y = \frac{x^{4} - 10x^{2} + 9}{(x - 1)(x + 3)} =\]
\[= \frac{(x - 1)(x + 1)(x - 3)(x + 3)}{(x - 1)(x + 3)} =\]
\[= (x + 1)(x - 3) = x^{2} + x - 3x - 3 =\]
\[= x^{2} - 2x - 3\]
\[x^{4} - 10x^{2} + 9 = \left( x^{2} - 1 \right)\left( x^{2} - 9 \right) =\]
\[= (x - 1)(x + 1)(x - 3)(x + 3)\]
\[x_{1}^{2} + x_{2}^{2} = 10;\ \ x_{1}^{2} \cdot x_{2}^{2} = 9\]
\[x_{1}^{2} = 1;\ \ x_{2}^{2} = 9.\]
\[y = x^{2} - 2x - 3;\ \ x \neq 1;\ \ x \neq - 3\]
\[y = q\ имеет\ с\ графиком\ ровно\ одну\ \]
\[общую\ точку\ при:\]
\[q = 12.\]
\[Ответ:12.\]