Вопрос:

Постройте график функции y=(x^2-x-12)/(x-4).

Ответ:

\[y = \frac{x^{2} - x - 12}{x - 4} = \frac{(x - 4)(x + 3)}{x - 4} =\]

\[= x + 3;\ \ \ \ x \neq 4\]

\[x^{2} - x - 12 = 0\]

\[x_{1} + x_{2} = 1;\ \ x_{1} \cdot x_{2} = - 12\]

\[x_{1} = 4,;\ \ \ \ \ \ \ \ \ \ x_{2} = - 3.\]

\[x^{2} - x - 12 = (x - 4)(x + 3)\]

\[y = x + 3;\ \ x \neq 4.\]

\[x\] \[0\] \[3\]
\[y\] \[3\] \[6\]

Похожие