\[y = \frac{x^{2} - x - 12}{x - 4} = \frac{(x - 4)(x + 3)}{x - 4} =\]
\[= x + 3;\ \ \ \ x \neq 4\]
\[x^{2} - x - 12 = 0\]
\[x_{1} + x_{2} = 1;\ \ x_{1} \cdot x_{2} = - 12\]
\[x_{1} = 4,;\ \ \ \ \ \ \ \ \ \ x_{2} = - 3.\]
\[x^{2} - x - 12 = (x - 4)(x + 3)\]
\[y = x + 3;\ \ x \neq 4.\]
\[x\] | \[0\] | \[3\] |
---|---|---|
\[y\] | \[3\] | \[6\] |