\[\ f\ возрастает\ при\ x > - 2.\]
\[y = 7x^{2} - 4x\]
\[y = 7 \cdot \left( x - \frac{2}{7} \right)^{2} - \frac{4}{7}\]
\[y_{наим} = y\left( \frac{2}{7} \right) = - \frac{4}{7}.\]
\[y = 2x^{2} - 11x + 5\ \ \ \ \ и\ \ \ y = - 7\]
\[- 7 = 2x^{2} - 11x + 5\]
\[2x^{2} - 11x + 12 = 0\]
\[D = b^{2} - 4ac = 121 - 4 \cdot 2 \cdot 12 =\]
\[= 121 - 96 = 25\]
\[x_{1} = \frac{11 - 5}{4} = \frac{6}{4} = 1,5\]
\[x_{2} = \frac{11 + 5}{4} = \frac{16}{4} = 4\]
\[Ответ:x = 1,5\ \ \ и\ \ \ x = 4.\]
\[y = - x^{2} + 6x - 4\]
\[1)\ x_{0} = \frac{- b}{2a} = \frac{- 6}{- 2} = 3\]
\[y_{0}(3) = - 9 + 18 - 4 = 5.\]
\[2) - x^{2} + 6x - 4 = 0\]
\[x² - 6x + 4 = 0\]
\[D = b^{2} - 4ac = 36 - 4 \cdot 1 \cdot 4 =\]
\[= 36 - 16 = 20\]
\[x_{1} = \frac{6 + 2\sqrt{5}}{2} = 3 + \sqrt{5}\]
\[x_{2} = \frac{6 - 2\sqrt{5}}{2} = 3 - \sqrt{5}\]
\[3)\ x = 0 \Longrightarrow y = - 4\]
\[\ x = 4,5 \Longrightarrow y = 2,75.\]