\[y = \sqrt{x}\]
\[x\] | \[9\] | \[4\] | \[1\] | \[0\] |
---|---|---|---|---|
\[y\] | \[3\] | \[2\] | \[1\] | \[0\] |
\[\left\{ \begin{matrix} x - 3y + 2 = 0 \\ y = \sqrt{x}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} 3y = x + 2 \\ y = \sqrt{x}\text{\ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} y = \frac{x + 2}{3} \\ y = \sqrt{x}\text{\ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[\frac{x + 2}{3} = \sqrt{x}\ \ \ \ \ \ \ | \cdot 3\]
\[(x + 2)^{2} = \left( 3\sqrt{x} \right)^{2}\]
\[x^{2} + 4x + 4 = 9x\]
\[x^{2} - 5x + 4 = 0\]
\[D = 25 - 16 = 9\]
\[x_{1,2} = \frac{5 \pm 3}{2} = 4;\ \ 1.\]
\[x_{1} = 4;\ \ \ \ \ \ \ \ \ \ \ \ x_{2} = 1\]
\[y_{1}(4) = \sqrt{4} = 2;\ \ \ \ \]
\[y_{2}(1) = \sqrt{1} = 1\]
\[Ответ:(4;2);\ \ (1;1).\]