\[\frac{1}{\sqrt{a + b} + \sqrt{a - b}} =\]
\[= \frac{\sqrt{a + b} - \sqrt{a - b}}{\left( \sqrt{a + b} + \sqrt{a - b} \right)\left( \sqrt{a + b} - \sqrt{a - b} \right)} =\]
\[= \frac{\sqrt{a + b} - \sqrt{a - b}}{a + b - (a - b)} = \frac{\sqrt{a + b} - \sqrt{a - b}}{a + b - a + b} =\]
\[= \frac{\sqrt{a + b} - \sqrt{a - b}}{2b}\]