\[\ \frac{8}{\sqrt{7} - 1} = \frac{8}{\sqrt{7} - 1} \cdot \frac{\sqrt{7} + 1}{\sqrt{7} + 1} =\]
\[= \frac{8 \cdot \left( \sqrt{7} + 1 \right)}{7 - 1} = \frac{8 \cdot \left( \sqrt{7} + 1 \right)}{6} =\]
\[= \frac{4 \cdot (\sqrt{7} + 1)}{3}\]
\[\frac{1^{\backslash 2\sqrt{3} - 1}}{2\sqrt{3} + 1} - \frac{1^{\backslash 2\sqrt{3} + 1}}{2\sqrt{3} - 1} = \frac{2\sqrt{3} - 1 - 2\sqrt{3} - 1}{\left( 2\sqrt{3} \right)^{2} - (1)^{2}} =\]
\[= \frac{- 2}{12 - 1} = \frac{- 2}{11} \Longrightarrow рациональное\ число.\]
\[\frac{\sqrt{a} - \sqrt{5}}{a - 5} = \frac{\sqrt{a} - \sqrt{5}}{(\sqrt{a} - \sqrt{5})(\sqrt{a} + \sqrt{5})} = \frac{1}{\sqrt{a} + \sqrt{5}}\]
\[Дробь\ примет\ наибольшее\ значение,\ \]
\[если\ знаменатель\ будет\ \]
\[наименьшим,\ т.е.\ при\ a = 0.\]
\[\ 2\sqrt{2} + \sqrt{50} - \sqrt{98} = 2\sqrt{2} + 5\sqrt{2} - 7\sqrt{2} =\]
\[= 7\sqrt{2} - 7\sqrt{2} = 0\]