\[\ \frac{8}{\sqrt{6} + \sqrt{2}} = \frac{8}{\sqrt{6} + \sqrt{2}} \cdot \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} - \sqrt{2}} =\]
\[= \frac{8 \cdot \left( \sqrt{6} - \sqrt{2} \right)}{6 - 2} = 2 \cdot \left( \sqrt{6} - \sqrt{2} \right)\]
\[\frac{1^{\backslash 2\sqrt{7} + 1}}{2\sqrt{7} - 1} - \frac{1^{\backslash 2\sqrt{7} - 1}}{2\sqrt{7} + 1} = \frac{2\sqrt{7} + 1 - 2\sqrt{7} + 1}{\left( 2\sqrt{7} \right)^{2} - 1^{2}} =\]
\[= \frac{2}{28 - 1} = \frac{2}{27} \Longrightarrow рациональное\ число.\]
\[\frac{\sqrt{x} - \sqrt{7}}{x - 7} = \frac{\sqrt{x} - \sqrt{7}}{\left( \sqrt{x} - \sqrt{7} \right)\left( \sqrt{x} + \sqrt{7} \right)} =\]
\[= \frac{1}{\sqrt{x} + \sqrt{7}}\]
\[Дробь\ примет\ наибольшее\ значение,\ \]
\[если\ знаменатель\ дроби\ будет\]
\[наименьшим,\ то\ есть\ x = 0.\]
\[\ 5\sqrt{2} + 2\sqrt{32} - \sqrt{98} = 5\sqrt{2} + 8\sqrt{2} - 7\sqrt{2} =\]
\[= 6\sqrt{2}\]