\[x^{2} + y^{2} = 17;\ \ \ \ \ 5x - 3y = 17\]
\[x^{2} = 17 - y^{2};\ \ \ \ x = \frac{17 + 3y}{5}\]
\[17 - y^{2} = \left( \frac{17 + 3y}{5} \right)^{2}\]
\[\frac{9y^{2} + 102y + 289}{25} + y^{2} - 17 = 0\ \ \ \ \ \ \ | \cdot 25\]
\[9y^{2} + 102y + 289 + 25y^{2} - 425 = 0\]
\[34y^{2} + 102y - 136 = 0\ \ \ \ \ \ \ |\ :34\]
\[y^{2} + 3y - 4 = 0\]
\[y_{1} + y_{2} = - 3;\ \ \ y_{1} \cdot y_{2} = - 4\]
\[y_{1} = - 4;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y_{2} = 1.\]
\[x_{1} = \frac{17 + 3 \cdot ( - 4)}{5} = 1;\ \ \ \ \]
\[\ x_{2} = \frac{17 + 3}{5} = 4.\]
\[Ответ:(1; - 4);\ \ (4;1).\]