\[h_{n} = \frac{1}{3}n + 6;\]
\[h_{1} = \frac{1}{3} \cdot 1 + 6 = 6\frac{1}{3};\]
\[h_{2} = \frac{1}{3} \cdot 2 + 6 = 6\frac{2}{3};\]
\[h_{3} = \frac{1}{3} \cdot 3 + 6 = 7;\]
\[h_{4} = 7 + \frac{1}{3} = 7\frac{1}{3};\ \]
\[h_{5} = 7\frac{1}{3} + \frac{1}{3} = 7\frac{2}{3}\]
\[h_{6} = \frac{1}{3} \cdot 6 + 6 = 2 + 6 = 8.\]