Вопрос:

Найдите целые решения системы неравенств: 3x^2-5x<=0; -0,6x+1,2>0.

Ответ:

\[\left\{ \begin{matrix} 3x^{2} - 5x \leq 0\ \ \ \ \ \\ - 0,6x + 1,2 > 0 \\ \end{matrix} \right.\ \]

\[3x^{2} - 5x = 0\]

\[x(3x - 5) = 0\]

\[x = 0,\ \ \ x = 1\frac{2}{3}\]

\[- 0,6x + 1,2 > 0\]

\[x < 2\]

\[Ответ:x = 1.\ \]

Похожие