\[b_{1} = 1;\ \ b_{4} = \frac{1}{8}:\]
\[b_{4} = b_{1} \cdot q^{3} \Longrightarrow q^{3} = \frac{b_{4}}{b_{1}};\]
\[q^{3} = \frac{1}{8}\ :1 = \frac{1}{8}\]
\[q = \frac{1}{2}.\]
\[S_{6} = \frac{b_{1}\left( 1 - q^{n} \right)}{1 - q} = \frac{1 \cdot \left( 1 - \left( \frac{1}{2} \right)^{6} \right)}{1 - \frac{1}{2}} =\]
\[= \frac{1 - \frac{1}{64}}{\frac{1}{2}} = \frac{63}{64}\ :\frac{1}{2} = \frac{63 \cdot 2}{64} = \frac{63}{32}.\]
\[Ответ:4).\]