\[S_{10} = \frac{2a_{1} + 9d}{2} \cdot 10 =\]
\[= \left( 2a_{1} + 9d \right) \cdot 5.\]
\[a_{4} = 16;\ \ a_{12} = 88:\]
\[a_{4} = a_{1} + 3d \rightarrow a_{1} = a_{4} - 3d;\]
\[a_{12} = a_{1} + 11d \rightarrow a_{1} =\]
\[= a_{12} - 11d.\]
\[a_{4} - 3d = a_{12} - 11d\]
\[16 - 3d = 88 - 11d\]
\[8d = 72\]
\[d = 9.\]
\[a_{1} = a_{4} - 3d = 16 - 3 \cdot 9 =\]
\[= 16 - 27 = - 11.\]
\[S_{10} = \left( 2 \cdot ( - 11) + 9 \cdot 9 \right) \cdot 5 =\]
\[= ( - 22 + 81) \cdot 5 = 59 \cdot 5 =\]
\[= 295.\]