Вопрос:

Найдите сумму членов арифметической прогрессии с восьмого по двадцать второй включительно, если первый член прогрессии равен 48, а разность прогрессии равна -4.

Ответ:

\[a_{1} = 48;\ \ d = - 4;\ \ S_{8}\ по\ \ S_{22};\ \ \]

\[n = 15:\]

\[S_{7} = \frac{2a_{1} + 6d}{2} \cdot 7 =\]

\[= 7 \cdot \left( a_{1} + 3d \right) = 7a_{1} + 21.\]

\[S_{22} = \frac{2a_{1} + d(22 - 1)}{2} \cdot 22 =\]

\[= 11 \cdot \left( 2a_{1} + 21d \right) =\]

\[= 22a_{1} + 231d.\]

\[S_{8 - 22} = S_{22} - S_{7} =\]

\[= 22a_{1} + 231d - 7a_{1} - 21d =\]

\[= 15a_{1} + 210\ d =\]

\[= 15 \cdot 48 + 210 \cdot ( - 4) =\]

\[= 720 - 840 = - 120.\]

\[Ответ: - 120.\]


Похожие