\[\frac{4x - 3^{\backslash 4x - 3}}{3x - 4} + \frac{3x - 4^{\backslash 3x - 4}}{4x - 3} - 2^{\backslash(3x - 4)(4x - 3)} = 0\]
\[16x^{2} - 24x + 9 + 9x^{2} - 24x + 16 -\]
\[- 2\left( 12x^{2} - 16x - 9x + 12 \right) = 0\]
\[25x^{2} - 48x + 25 - 24x^{2} + 50x - 24 = 0\]
\[x^{2} + 2x + 1 = 0\]
\[(x + 1)^{2} = 0\]
\[x + 1 = 0\]
\[x = - 1.\]
\[Ответ:x = - 1.\]