Вопрос:

Найдите область определения функции: корень из (3x^2-10x+3)^-1.

Ответ:

\[\sqrt{\left( 3x^{2} - 10x + 3 \right)^{- 1}}\]

\[\left( 3x^{2} - 10x + 3 \right)^{- 1} \geq 0\]

\[\frac{1}{3x^{2} - 10x + 3} > 0\]

\[3x^{2} - 10x + 3 > 0\]

\[D_{1} = 25 - 9 = 16\]

\[x_{1} = \frac{5 + 4}{3} = 9;\ \]

\[x_{2} = \frac{5 - 4}{3} = \frac{1}{3};\]

\[\left( x - \frac{1}{3} \right)(x - 9) > 0\]

\[x < \frac{1}{3};\ \ \ x > 9.\]

Похожие