\[\frac{x\sqrt{7}}{x\sqrt{7} - \sqrt{2}} = \frac{x\sqrt{2}}{\sqrt{7} - x\sqrt{2}}\]
\[ОДЗ:\]
\[1)\ x\sqrt{7} - \sqrt{2}
eq 0\]
\[x\sqrt{7}
eq \sqrt{2}\]
\[x
eq \frac{\sqrt{2}}{\sqrt{7}}\]
\[2)\ \sqrt{7} - x\sqrt{2}
eq 0\]
\[x\sqrt{2}
eq \sqrt{7}\]
\[x
eq \frac{\sqrt{7}}{\sqrt{2}}\]
\[x\sqrt{7}\left( \sqrt{7} - x\sqrt{2} \right) =\]
\[= x\sqrt{2}\left( x\sqrt{7} - \sqrt{2} \right)\]
\[7x - x^{2}\sqrt{14} = x^{2}\sqrt{14} - 2x\]
\[- 2\sqrt{14}x^{2} + 9x = 0\]
\[x\left( - 2\sqrt{14}\ x + 9 \right) = 0\]
\[x = 0\ \ \ \ \ \ \ \ \ - 2\sqrt{14}x + 9 = 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ - 2\sqrt{14}x = 9\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = \frac{- 9}{- 2\sqrt{14}} = \frac{9\sqrt{14}}{28}\]
\[Ответ:\ x = 0;\ \ \ \ \ \ x = \frac{9\sqrt{14}}{28}.\]