\[\frac{5}{x - 2} + 1 = \frac{14}{x^{2} - 4x + 4}\]
\[ОДЗ:\ \ x \neq 2\]
\[\frac{5 \cdot (x - 2) + x^{2} - 4x + 4}{x^{2} - 4x + 4} =\]
\[= \frac{14}{x² - 4x + 4}\]
\[5x - 10 + x^{2} - 4x + 4 = 14\]
\[x^{2} + x - 6 - 14 = 0\]
\[x^{2} + x - 20 = 0\]
\[x_{1} + x_{2} = - 1\]
\[x_{1} \cdot x_{2} = - 20 \Longrightarrow x_{1} = - 5;\ \ \]
\[x_{2} = 4\]
\[Ответ:\ x = - 5;\ \ x = 4.\]