\[\frac{2x^{2} + x}{5} = \frac{4x - 2}{3}\ \ \ \ \ \ \ | \cdot 15\]
\[3 \cdot \left( 2x^{2} + x \right) = 5 \cdot (4x - 2)\]
\[6x^{2} + 3x = 20x - 10\]
\[6x² - 17x + 10 = 0\]
\[D = b^{2} - 4ac =\]
\[= 289 - 4 \cdot 6 \cdot 10 =\]
\[= 289 - 240 = 49\]
\[x_{1} = \frac{17 + 7}{12} = \frac{24}{12} = 2\]
\[x_{2} = \frac{17 - 7}{12} = \frac{10}{12} = \frac{5}{6}\]
\[Ответ:x_{1} = 2;\ \ x_{2} = \frac{5}{6}.\]