Вопрос:

Мяч подбросили вертикально вверх с высоты 1,5 м, придав ему начальную скорость 10 м/с. По графику изменения высоты его полёта в зависимости от времени движения ответьте на вопросы: На какой высоте находился мяч через 1,5 с после начала полёта?

Ответ:

\[на\ высоте\ 5,25\ м.\]

\[y = 3x^{2} + 8x - 3\]

\[а)\ x = - 2:\]

\[y = 3 \cdot 4 - 8 \cdot 2 - 3 = 12 - 16 - 3 = - 7.\]

\[Ответ:y = - 7.\]

\[y = - 3:\]

\[3x^{2} + 8x - 3 = - 3\]

\[3x^{2} + 8x = 0\]

\[3x\left( x + \frac{8}{3} \right) = 0\]

\[1)\ x = 0.\]

\[2)\ x + \frac{8}{3} = 0\]

\[x = - 2\frac{2}{3}.\]

\[Ответ:x = 0;x = - 2\frac{2}{3}.\]


\[Нули\ функции:\]

\[3x^{2} + 8x - 3 = 0\]

\[D = 64 + 36 = 100\]

\[x_{1} = \frac{- 8 + 10}{6} = \frac{2}{6} = \frac{1}{3};\]

\[x_{2} = \frac{- 8 - 10}{6} = - \frac{18}{6} = - 3.\]

\[Ответ:x_{1} = \frac{1}{3};\ \ x_{2} = - 3.\ \]

\[y = x^{2} - 2x - 8\]

\[x^{2} - 2x - 8 = 0\]

\[D_{1} = 1 + 8 = 9\]

\[x_{1} = 1 + 3 = 4;x_{2} = 1 - 3 = - 2.\]

\[x_{0} = - \frac{b}{2a} = \frac{2}{2} = 1;\]

\[y_{0} = 1 - 2 - 8 = - 9.\]

\[\ x \in ( - 2;4).\]

\[Функция\ убывает\ на\ промежутке:\]

\[( - \infty;1).\]

\[x^{2} - 6x + 5 > 0\]

\[D_{1} = 9 - 5 = 4\]

\[x_{1} = 3 + 2 = 5;x_{2} = 3 - 2 = 1.\]

\[(x + 1)(x - 5) > 0\]

\[x \in ( - \infty;1) \cup (5; + \infty).\]

\[Ответ:\ x \in ( - \infty;1) \cup (5; + \infty).\]

\[\sqrt{3 - \frac{1}{3}a^{2}}\]

\[ООВ:\]

\[3 - \frac{1}{3}a^{2} \geq 0\ \ \ \ \ \ \ | \cdot 3\]

\[9 - a^{2} \geq 0\]

\[a^{2} - 9 \leq 0\]

\[(a + 3)(a - 3) \leq 0\]

\[a \in \lbrack - 3;3\rbrack.\]

\[Ответ:\ a \in \lbrack - 3;3\rbrack.\]

\[y = - 3x^{2}\]

\[y = - 3 \cdot (x - 2)^{2} + 3 =\]

\[= - 3 \cdot \left( x^{2} - 4x + 4 \right) + 3 =\]

\[= - 3x^{2} + 12x - 12 + 3 =\]

\[= - 3x^{2} + 12x - 9.\]

\[Уравнение\ параболы:\]

\[y = - 3x^{2} + 12x - 9.\]

\[y = 2x^{2} + bx + c;\ \ вершина\ ( - 1;5):\]

\[x_{0} = - \frac{b}{2a}\]

\[- 1 = - \frac{b}{4}\]

\[b = 4.\]

\[y_{0} = 2x^{2} + 4x + c\]

\[5 = 2 \cdot 1 + 4 \cdot ( - 1) + c\]

\[c = 5 - 2 + 4 = 7.\]

\[Ответ:b = 4;\ \ c = 7.\]

Похожие