1) ((c^4)^4*c^4+-1)/c^5
2) ((c^-4)^2*c^14)/c^3
3) ((c^-4)^-4*c^14)/c^3
4) ((c^-4)^2*c^14)/c^-3
\[1)\ \frac{\left( c^{4} \right)^{4} \cdot c^{- 1}}{c^{5}} = c^{16} \cdot c^{- 6} = c^{10}\]
\[2)\ \frac{\left( c^{- 4} \right)^{2} \cdot c^{14}}{c^{3}} = c^{- 8} \cdot c^{11} = c^{3}\]
\[3)\ \frac{\left( c^{- 4} \right)^{- 4} \cdot c^{14}}{c^{3}} = c^{16} \cdot c^{11} = c^{27}\]
\[4)\ \frac{\left( c^{- 4} \right)^{2} \cdot c^{14}}{c^{- 3}} = c^{- 8} \cdot c^{17} = c^{9}\]
\[Ответ:2.\]