\[y = x^{3} - x^{2} - 4x + 4\]
\[\frac{2}{5c - c^{2}}\]
\[ООФ:\]
\[5c - c^{2} \neq 0\]
\[c(5 - c) \neq 0\]
\[c \neq 0;\ \ c \neq 5.\]
\[c \in ( - \infty;0) \cup (0;5) \cup (5; + \infty).\]
\[\frac{5c}{c^{2} + 1}\]
\[ООФ:\]
\[c^{2} + 1 \neq 0\]
\[c^{2} \neq - 1\]
\[c - любое\ число.\]
\[c \in ( - \infty;\ + \infty).\]
\[\left( \frac{x^{\backslash y + x}}{x - y} - \frac{x^{\backslash x - y}}{y + x} \right)\ :\frac{x^{2}}{x + y} =\]
\[= \frac{x \cdot (x + y) - x \cdot (x - y)}{(x - y)(x + y)} \cdot \frac{x + y}{x^{2}} =\]
\[= \frac{x(x + y - x + y)}{(x - y) \cdot x^{2}} = \frac{2y}{x(x - y)}\]
\[(5x + 8)\left( 9 - x^{2} \right) = 0\]
\[1)\ 5x + 8 = 0\]
\[5x = - 8\]
\[x = - 1,6.\]
\[9 - x^{2} = 0\]
\[x^{2} = 9\]
\[x = \pm 3.\]
\[Ответ:x = \pm 3;x = - 1,6.\]
\[x^{4} - 2x^{2} - 8 = 0\]
\[Пусть\ x^{2} = y:\]
\[y^{2} - 2y - 8 = 0\]
\[D_{1} = 1 + 8 = 9\]
\[y_{1} = 1 + 3 = 4;\ \ y_{2} = 1 - 3 = - 2.\]
\[Подставим:\]
\[1)\ x^{2} = 4\]
\[x = \pm 2.\]
\[2)\ x^{2} = - 2\]
\[нет\ корней.\]
\[Ответ:x = \pm 2.\]
\[\frac{5}{n} + \frac{4}{n - 3} = 3\ \ \ | \cdot n(n - 3)\]
\[5 \cdot (n - 3) + 4n = 3n(n - 3)\]
\[5n - 15 + 4n = 3n^{2} - 9n\]
\[3n^{2} - 9n - 9n + 15 = 0\ \ \ |\ :3\]
\[n^{2} - 6n + 5 = 0\]
\[D_{1} = 9 - 5 = 4\]
\[n_{1} = 3 + 2 = 5;\ \ n_{2} = 3 - 2 = 1.\]
\[Ответ:при\ n = 1;n = 5.\]
\[Пусть\ x\ \frac{км}{ч} - собственная\ скорость\ лодки.\]
\[\frac{36}{x + 2}\ ч - время\ по\ течению;\]
\[\frac{20}{x - 2}\ ч - время\ против\ течения.\]
\[Составим\ уравнение:\]
\[\frac{36}{x + 2} = \frac{20}{x - 2}\ \]
\[36 \cdot (x - 2) = 20 \cdot (x + 2)\]
\[36x - 72 = 20x + 40\]
\[16x = 112\]
\[x = 7\ \left( \frac{км}{ч} \right) - собственная\ скорость\]
\[лодки.\]
\[Ответ:7\ \frac{км}{ч}.\]
\[\frac{2x - 5}{2x^{2} - 3x - 5} = \frac{2x - 5}{(2x - 5)(x + 1)} = \frac{1}{x + 1}.\]
\[2x^{2} - 3x - 5 = 2 \cdot \left( x - \frac{5}{2} \right)(x + 1) =\]
\[= (2x - 5)(x + 1)\]
\[D = 9 + 40 = 49\]
\[x_{1} = \frac{3 + 7}{4} = \frac{10}{4} = \frac{5}{2};\]
\[x_{2} = \frac{3 - 7}{4} = - 1.\]
\[y = \frac{x - 1}{x^{2} - x} = \frac{x - 1}{x(x - 1)} = \frac{1}{x}\]
\[y = \frac{1}{x};\ \ \ x \neq 0;\ \ x \neq 1.\]
\[y = - x^{3} + 3x^{2} + x - 3 =\]
\[= - x^{2}(x - 3) + (x - 3) =\]
\[= (x - 3)\left( 1 - x^{2} \right)\]
\[x_{1} = 1;x_{2} = - 1;x_{3} = 3.\ \ \]
\[Ответ:x = \pm 1;x = 3\]