\[\left( \frac{a^{2}}{a + 5} - \frac{a^{3}}{a^{2} + 10a + 25} \right)\ :\left( \frac{a}{a + 5} - \frac{a^{2}}{a^{2} - 25} \right) = \frac{5a - a^{2}}{a + 5}\]
\[Преобразуем\ левую\ часть:\]
\[\frac{a^{2}}{a + 5} - \frac{a^{3}}{a^{2} + 10a + 25} =\]
\[= \frac{{a^{2}}^{\backslash a + 5}}{a + 5} - \frac{a^{3}}{(a + 5)^{2}} =\]
\[= \frac{a^{2} + 5a^{2} - a^{3}}{(a + 5)^{2}} = \frac{5a^{2}}{(a + 5)^{2}};\]
\[\frac{a}{a + 5} - \frac{a^{2}}{a^{2} - 25} =\]
\[= \frac{a^{\backslash a - 5}}{a + 5} - \frac{a^{2}}{(a + 5)(a - 5)} =\]
\[= \frac{a^{2} - 5a - a^{2}}{a^{2} - 25} = - \frac{5a}{a^{2} - 25};\]
\[\frac{5a^{2}}{(a + 5)^{2}}\ :\left( - \frac{5a}{a^{2} - 25} \right) =\]
\[= - \frac{5a^{2}}{(a + 5)^{2}} \cdot \frac{a^{2} - 25}{5a} =\]
\[= - \frac{a(a - 5)(a + 5)}{(a + 5)^{2}} =\]
\[= \frac{- a(a - 5)}{a + 5} = \frac{5a - a^{2}}{a + 5}.\]
\[Что\ и\ требовалось\ доказать.\]