Вопрос:

Докажите справедливость равенства ctg2a=(ctg^2a-1)/(2ctga) для углов a≠πn, где n – любое целое число.

Ответ:

\[\mathbf{\text{ct}}g\ 2a = \frac{\text{ct}g^{2}a - 1}{2ctg\ a}\mathbf{;\ \ \ \ \ \ \ a
eq 2}\mathbf{\pi}\]

\[\frac{\cos{2a}}{\sin{2a}} = \frac{\text{ct}g^{2}a - 1}{2ctg\ a}\]

\[\frac{\cos^{2}a - \sin^{2}a}{2\sin a \cdot \cos a} = \frac{\text{ct}g^{2}a - 1}{2ctg\ a}\]

\[\frac{\frac{\cos^{2}a}{\sin^{2}a} - \frac{\sin^{2}a}{\sin^{2}a}}{\frac{2\sin a \cdot \cos a}{\sin^{2}a}} = \ \frac{\text{ct}g^{2}a - 1}{2ctg\ a}\]

\[\frac{\text{ct}g^{2}a - 1}{2ctg\ a} = \frac{\text{ct}g^{2}a - 1}{2ctg\ a}\]

Похожие