\[a;b;c;d - геометрическая\ \]
\[прогрессия.\]
\[То\ есть:\]
\[b^{2} = ac;\ \ c^{2} = bd.\]
\[(a - d)^{2} =\]
\[= (a - c)^{2} + (b - c)^{2} + (b - d)^{2}\]
\[2b^{2} + 2c^{2} =\]
\[= 2ac + 2bc + 2bd - 2ad\]
\[Заменим\ bc = ad:\]
\[2b^{2} + 2c^{2} = 2 \cdot (ac + bd)\]
\[2bc - 2ad = 0;тогда\]
\[2b^{2} + 2c^{2} =\]
\[= 2 \cdot (ac + bd) + 2bc - 2ad.\]
\[Оба\ равенства\ эквиваленты.\]
\[Что\ и\ требовалось\ доказать.\]