\[x² + (1 - 3a)x + 2a² - 2 = 0\]
\[= 1 - 6a + 9a^{2} - 8a^{2} + 8 =\]
\[= a^{2} - 6a + 9 = (a - 3)^{2}\]
\[x_{1,2} = \frac{- (1 - 3a) \pm \sqrt{(a - 3)^{2}}}{2 \cdot 1} =\]
\[= \frac{3a - 1 \pm |a - 3|}{2}\]
\[1)\ \ a = 3:\]
\[x = \frac{3 \cdot 3 - 1 \pm |3 - 3|}{2} =\]
\[= \frac{9 - 1 \pm 0}{2} = \frac{8}{2} = 4.\]
\[2)\ a > 3:\]
\[x_{1} = \frac{3a - 1 + a - 3}{2} = \frac{4a - 4}{2} =\]
\[= 2a - 2;\]
\[x_{2} = \frac{3a - 1 - a + 3}{2} = \frac{2a + 2}{2} =\]
\[= a + 1.\]
\[Ответ:a = 3 \Longrightarrow \ x = 4;\ \ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ a > 3 \Longrightarrow x_{1} = 2a - 2;\ \ \]
\[x_{2} = a + 1.\]