\[\frac{1}{a - 5b} < \frac{1}{b};\ \ \ \ так\ как\ \ \]
\[\frac{1^{\backslash b}}{a - 5b} - \frac{1^{\backslash a - 5b}}{b} = \frac{b - a + 5b}{b(a - 5b)} =\]
\[= \frac{6b - a}{b(a - 5b)}\]
\[Так\ как\ (6b - a) > 0;\ \ b > 0;\ \ \]
\[a - 5b < 0;то\]
\[\frac{6b - a}{b(a - 5b)} < 0.\ \]
\[Получаем:\]
\[\frac{1}{a - 5b} < \frac{1}{b}.\]