\[x^{2} + 6x + 3 = 0\]
\[\frac{x_{1}}{x_{2}} + \frac{x_{2}}{x_{1}} + 1 = \frac{x_{1}^{2} + x_{2}^{2} + x_{1}x_{2}}{x_{1}x_{2}} =\]
\[= \frac{\left( x_{1} + x_{2} \right)^{2} - x_{1}x_{2}}{x_{1}x_{2}} =\]
\[= \frac{\left( x_{1} + x_{2} \right)^{2}}{x_{1}x_{2}} - 1 =\]
\[= \frac{( - 6)^{2}}{3} - 1 = \frac{36}{3} - 1 =\]
\[= 12 - 1 = 11.\]