\[a_{1} \cdot a_{3} = - 5;\ \ S_{3} = 6;\]
\[a_{3} = a_{1} + 2d;\]
\[S_{3} = \frac{a_{1} + a_{1} + 2d}{2} \cdot 3 = \frac{2a_{1} + 2d}{2} \cdot 3 = \left( a_{1} + d \right) \cdot 3\]
\[\left( a_{1} + d \right) \cdot 3 = 6\]
\[a_{1} + d = 2;\]
\[d = 2 - a_{1};\]
\[a_{1}\left( a_{1} + 2d \right) = - 5\]
\[a_{1}\left( a_{1} + 2\left( 2 - a_{1} \right) \right) = - 5\]
\[a_{1}\left( a_{1} + 4 - 2a_{1} \right) = - 5\]
\[- a_{1}^{2} + 4a_{1} + 5 = 0\]
\[a_{1}^{2} - 4a_{1} - 5 = 0\]
\[a_{1} = - 1;\ \ a_{1} = 5;\]
\[d_{1} = 2 + 1 = 3\ (не\ подходит,\ \]
\[так\ как\ прогрессия\ убывающая);\]
\[d = 2 - 5 = - 3;a_{1} = 5.\]
\[S_{7} = \frac{2a_{1} + 6d}{2} \cdot 7 =\]
\[= \frac{2 \cdot 5 + 6 \cdot ( - 3)}{2} \cdot 7 =\]
\[= \frac{10 - 18}{2} \cdot 7 = - \frac{8}{2} \cdot 7 = - 28.\]
\[Ответ:\ - 28.\]