Решение неравенства: Найдем корни квадратного трехчлена $x^2 + 8x + 7$. Дискриминант $D = 8^2 - 4 \cdot 1 \cdot 7 = 64 - 28 = 36$. Корни: $x_1 = \frac{-8-\sqrt{36}}{2} = -7$, $x_2 = \frac{-8+\sqrt{36}}{2} = -1$. Схема знаков: $(-\infty, -7) \cup (-1, +\infty)$.