\(\overrightarrow{a}\) = \(\frac{\overrightarrow{v} - {\overrightarrow{v}}_{0}}{t}\) = \(\frac{\mathrm{\Delta}\overrightarrow{v}}{\mathrm{\Delta}t}\) = \(v^{I}\)(t) = \(S^{\text{II}}\)(t)
[а] = м/\(с^{2}\)
v = \(v_{0}\) \(\pm\) at – скорость
S = \(v_{0}\)t \(\pm\) \(\frac{at^{2}}{2}\)
S = \(\frac{v^{2} - v_{0}}{2a}\) – перемещение
x = \(x_{0}\) \(\pm\) \(v_{0}\)t \(\pm\) \(\frac{at^{2}}{2}\) – координата
a = \(\frac{\mathrm{\Delta}v}{\mathrm{\Delta}t}\) = tg\(\alpha\)
S = \(S_{\mathrm{\Delta}}\) = \(\frac{\text{ab}}{2}\) = \(\frac{\mathrm{\Delta}vt}{2}\)
S = \(S_{\mathrm{\Delta}}\) = \(\frac{1}{2}\) ah
t = \(\frac{1}{2}\) tv
S = \(S_{трапец.}\) = \(\frac{a + \ b}{2}\) h = \(\frac{v\ + \ v_{0}}{2}\) t
Путь l = \(S_{1}\) + \(S_{2}\) + \(S_{3}\)
\(a_{3}\) > \(a_{2}\) > \(a_{1}\)