ГДЗ по алгебре и начала математического анализа 11 класс Колягин Задание 767

Авторы:
Год:2020-2021-2022-2023
Тип:учебник

Задание 767

\[a + \beta + \gamma = \pi.\]

\[1)\sin\alpha + \sin\beta - \sin\gamma =\]

\[= 4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\cos\frac{\gamma}{2};\]

\[\gamma = \pi - (\alpha + \beta)\]

\[\alpha + \beta = \pi - \gamma.\]

\[4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\cos\frac{\gamma}{2} =\]

\[= 4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\cos\left( \frac{\pi}{2} - \frac{\alpha + \beta}{2} \right) =\]

\[= 4\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\left( \frac{\alpha}{2} + \frac{\beta}{2} \right) =\]

\[= 4\sin\frac{\alpha}{2}\sin\frac{\beta}{2} \bullet \left( \sin\frac{\alpha}{2}\cos\frac{\beta}{2} + \sin\frac{\beta}{2}\cos\frac{\alpha}{2} \right) =\]

\[= 4\sin^{2}\frac{\alpha}{2}\sin\frac{\beta}{2}\cos\frac{\beta}{2} + 4\sin\frac{\alpha}{2}\sin^{2}\frac{\beta}{2}\cos\frac{\alpha}{2} =\]

\[= 2\sin\beta \bullet \frac{1 - \cos\alpha}{2} + 2\sin\alpha \bullet \frac{1 - \cos\beta}{2} =\]

\[= \sin\beta \bullet \left( 1 - \cos\alpha \right) + \sin\alpha \bullet \left( 1 - \cos\beta \right) =\]

\[= \sin\beta - \sin\beta \bullet \cos\alpha + \sin\alpha - \sin\alpha \bullet \cos\beta =\]

\[= \sin\alpha + \sin\beta - \sin(\alpha + \beta) =\]

\[= \sin\alpha + \sin\beta - \sin(\pi - \gamma) =\]

\[= \sin\alpha + \sin\beta - \sin\gamma.\]

\[Что\ и\ требовалось\ доказать.\]

\[2)\sin{2\alpha} + \sin{2\beta} + \sin{2\gamma} =\]

\[= 4\sin\alpha\sin\beta\sin\gamma;\]

\[a + \beta = \pi - \gamma;\]

\[\alpha + \gamma = \pi - \beta;\]

\[\beta + \gamma = \pi - \alpha.\]

\[\sin{2\alpha} + \sin{2\beta} + \sin{2\gamma} =\]

\[= 2 \bullet \sin\frac{2\alpha + 2\beta}{2} \bullet \cos\frac{2\alpha - 2\beta}{2} + \sin{2\gamma} =\]

\[= 2\sin(\alpha + \beta) \bullet \cos(\alpha - \beta) + \sin{2\gamma} =\]

\[= 2\sin(\pi - \gamma) \bullet \cos(a - \beta) + 2\sin\gamma \bullet \cos\gamma =\]

\[= 2\sin\gamma \bullet \left( \cos(\alpha - \beta) + \cos\gamma \right) =\]

\[= 2\sin\gamma \bullet 2\cos\frac{\alpha - \beta + \gamma}{2} \bullet \cos\frac{\alpha - \beta - \gamma}{2} =\]

\[= 4\sin\gamma \bullet \cos\frac{(\pi - \beta) - \beta}{2} \bullet \cos\frac{a - (\pi - a)}{2} =\]

\[= 4\sin\gamma \bullet \cos\left( \frac{\pi}{2} - \beta \right) \bullet \cos\left( \alpha - \frac{\pi}{2} \right) =\]

\[= 4\sin\gamma \bullet \sin\beta \bullet \sin\alpha.\]

\[Что\ и\ требовалось\ доказать.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам